
Using Bittorrent and SVC for Efficient Video Sharing and Streaming

Amer Abdelhalim⇤, Toufik Ahmed†, Hidouci Walid-Khaled‡ and Satoshi Matsuoka⇤
⇤ Tokyo Institute of Technology, Tokyo, Japan

amer@matsulab.is.titech.ac.jp, matsu@is.titech.ac.jp
† CNRS LaBRI Lab. UMR 5800-University of Bordeaux-1, Talence, France

tad@labri.fr
‡ Ecole nationale Suprieure d’Informatique, Algiers, Algeria

w hidouci@esi.dz

Abstract—Massive and large scale content distribution over
Internet is attracting a lot of research efforts as many chal-
lenges remain to be solved. Recent studies show that Internet
video including video-to-TV and video calling is dominating
the Internet traffic. As Internet becomes widely accessible to
wired, mobile and wireless users, it is important to design a
system that can ensure video streaming across variable network
conditions while simultaneously handling devices and end-user
heterogeneities.

Most of the proposed solutions, such as CDN and peer-
to-peer (P2P), solve the scalability problem but fail to handle
receiver’s heterogeneity. In this paper, we combine P2P network
and SVC (Scalable Video Coding) to provide an efficient video
sharing and streaming system. Our solution consists of an SVC
layered extension of the widely used Bittorrent protocol to
support real-time content delivery with different video qualities
given the receivers capabilities. Thus, we propose different
optimization techniques to organize peers in an overlay. The
results, obtained by means of simulation, show that our system
outperforms solutions that relay on single layer streams such
as AVC (Advanced Video Coding) and this in terms of receivers
perceived QoS.

Keywords-SVC; streaming; peer-to-peer; Bittorrent; QoS

I. INTRODUCTION

Delivery multimedia services over the Internet, such as
IPTV and video on demand (VoD), are becoming very
popular and wide spread. According to [1], in the end
of 2009, video content -excluding the one shared by P2P
networks- has represented 33.2% of the consumed Internet
traffic and would have approached 40% by the end of 2010
while a sevenfold increase in video traffic from 2009 to
2014 was predicted. Those services are QoS (quality of
service) demanding and present many challenges due to use
of best effort IP networks. Moreover, content consumers
are accessing these services via disparate networks, such as
broadband and wireless networks, and using a wide range of
devices such as TV, computers, and smart-phones. Another
aspect of this phenomenon is video sharing, where the
user can contribute in generating and sharing video content.
YouTube [2] falls into this category, where statistics show
that YouTube represents 60% of the video watched on the
Internet [3], and 20% of the HTTP traffic which is nearly
10% of all the traffic on the Internet [4].

Many solutions have been adopted in practice and
proposed in the literature to tackle challenges related
to real-time multimedia delivery. They vary from sim-
ple client/server streaming, to Content Delivery Net-
works (CDNs), peer-to-peer (P2P) systems, and cloud-
based streaming. Network access, its dynamic variation,
and terminal heterogeneity are posing more difficulties to
guarantee an acceptable level of quality of service for the
consumer. These issues have been addressed using different
techniques ranging from simulcast of different qualities, to
adapting the streams using Scalable Video Coding (SVC),
Multiple Description Coding, Network Coding (NC), or their
combination. Content adaptation can be even more efficient
when carefully combined with cross-layer interactions. In
this approach, network layers performances (link, network,
and transport layers performance statistics), along with user
preferences and terminal capabilities are gathered and used
to coordinate the QoS adaptation at different levels of the
protocol stack [5].

However, to provide a large-scale solution, P2P networks
have emerged as an effective way of sharing large media
content, leading to a more reliable and efficient system. They
are used to overcome the deficiency of client/server solutions
to provide large scale delivery and to manage the bandwidth
bottleneck. Many P2P based video streaming systems have
been developed and were successfully deployed. They are
showing high QoS, scalability, and reliability compared to
client/server models or CDN-based solutions. PPLive [6],
Gridmedia [7] and Sopcast [8] are just few examples among
others. Moreover, to ensure streaming over packet loss
variable networks, such as mobile and wireless networks,
characterized by a limited bandwidth and changing terminals
capability, Scalable Video Coding (SVC) has been proposed
to allow for a stream to be encoded with one or more
substreams that can be decoded to offer different qualities
[9]. Some work has been conducted in order to combine
the features of SVC with the scalability, reliability and
performance of P2P systems. In [10], a hybrid overlay
network management for real-time multimedia streaming
over P2P networks using SVC was proposed. Other authors
tried to improve SVC with Multiple Description Coding



(MDC) [11] or Network Coding (ND) [12]. However, most
of these works do not support the end-user capability to
generate and share video content with different qualities. We
believe that combining SVC and P2P systems can both help
sharing and streaming video content with different qualities
over variable network conditions and changing terminal
capabilities. Both features are essential for large-scale and
massive distribution of next generation services.

In this work, we propose an integrated solution combining
the widely used Bittorrent protocol [13] and the multiple
layers capabilities of SVC to provide different quality of
service levels with a wide range of scalability. The cost and
effort to deploy and prove such a large infrastructure in a
real testbed can be time consuming and insurmountable.
Thus, we propose to extend the packet-level ns-2 based
Bittorrent simulator [14] to evaluate the effectiveness of our
solution. The flexibility of using simulation let us innovate
on peers and pieces selection algorithms, changing readily
many important parameters and scaling to hundreds of peers
while validating our results by using real video streams and
network characteristics. Applying SVC streams in a P2P
system increases the global utility of the content delivery,
where we expect a better QoS compared to single-layer
such as AVC stream. However, the straightforward extension
exhibits a careful analysis as the peer organization into an
overlay has an important impact on the delivered quality. To
achieve a better QoS, we proposed to organize the overlay
hierarchically by grouping together peers having the same
capacity. In particular the peers having a high capacity will
be placed near the source. The obtained results show that
this strategy outperforms the Bittorrent peer organization.
Furthermore, we studied the scalability issues of this solution
in terms of offered QoS.

The rest of this paper is organized as follows: Section 2
presents the background necessary to understand this work
including Bittorrent protocol and SVC standard. Section 3
describes our solution by giving the details on how we
extended Bittorrent to stream scalable video considering
real-time delivery constraints. Primary results are presented
in Section 4 followed by a series of optimizations and their
results. More results are presented in order to evaluate our
system in terms of scalability. We discuss about related work
in Section 5 and conclude in Section 6.

II. BACKGROUND

A. Bittorrent protocol
Bittorrent [13] is a P2P file-sharing protocol designed to

facilitate file transfers among multiple peers across unre-
liable networks. The protocol ensures the communication
between the peers, seeders possessing the complete file
as opposed to leechers, and a central entity, the tracker,
which is used for peer discovery. The power of Bittorrent
relies on basically two simple algorithms, choking and piece
selection, proved to ensure high download rates for clients

and avoiding free-riding behavior in the system. Choking
controls to whom the peer can upload, and it is done for
many reasons. It is designed in order to have good TCP
performance, by limiting the number of unchocked peers,
avoid fibrillation, by only changing choked peers once every
ten seconds, and ensure good download rate for the peers,
where each peer uses a tit-for-tat algorithm to reciprocate
with peers who let it download. Additionally, the algorithm
tries out unused connections every 30 seconds to find out
if they might be better than the currently used ones, known
as optimistic unchoking. The piece selection may be done
randomly but can be improved by downloading first the
rarest pieces. This can be approximated by knowing the
pieces available at the neighborhoods.

Many researchers were interested in this powerful proto-
col and its possible application for video streaming purposes.
In [15], the authors give higher download priority to pieces
that are close to be used by the player (close to playback
deadline), while a sliding window was used in [16]. Given
the deployment difficulties of such a system, researchers
preferred simulation over real environment. In [17] and [18],
the authors implemented the original Bittorrent protocol and
added some extensions using the OMNET++ simulator [19]
to compare different streaming strategies. Another similar
simulation was proposed on top of the ns-2 simulator [14],
however implementing mainly the original Bittorrent speci-
fication and ignoring the details of the torrent files, like the
hash values, and the tracker implementation. For simplicity
reasons, we adopted the latter solution as a basis for our
Bittorrent SVC streaming simulator.

B. Scalable Video Coding
Scalable Video Coding (SVC) [9] provides efficient video

adaptation by truncating parts of the bitstream resulting in
a valid substream. This feature is particularly useful when
providing multimedia contents to different user terminal
capabilities and network accesses, and variable network con-
ditions. The H.264/SVC amendment is the last advances in
this domain, which is a scalable extension of the H.264/AVC
standard. Using SVC to encode video instead of AVC
usually results in a slight increase in bitrate since SVC
introduces encoding/decoding overhead. When encoding a
bitstream using SVC, there has to be a trade-off between
the available qualities, the desired bitrate, and the coding
efficiency.

SVC bitstreams are composed of a base layer, compatible
with H.264/AVC, which can be enhanced by one or multiple
temporal, spatial or quality enhancement layers. The video
is a set of GOPs (Group Of Pictures) containing frames
called Access Units (AUs), which are composed of Network
Abstraction Layer (NAL) units [9]. A NAL unit may belong
to a certain layer which can be described as a triple (D,Q,T)
representing its Dependency (spatial), Quality and Temporal
level identifiers, where the higher levels depend on the



(1,1,1) (1,1,2)

(1,0,1) (1,0,2)

(0,1,1) (0,1,2)

(0,0,0) (0,0,1) (0,0,2) (0,0,0)

Complete frame

Sliding WindowCurrent frame to play

Incomplete frame

D1

D0

Q1

Q0

Q1

Q0

Time

Figure 1. Snapshot of the buffer and the sliding window. The gray
boxes are considered full (NAL units received) while the white ones are
considered empty

source

LayerMax

Layer 0
Base layer

Layer i

Tracker

swarm

Layer i+1

Layer i-1

Intensive communication

Figure 2. Overlay organization. The arrows represent the unchoked peers,
where they go from senders to receivers. Unchoking priority order: 1) Black
arrows when both involved peers are situated on the same layer. 2) Gray
arrows between the next closest peers. 3) Dotted arrows for the rest.

lower ones in order to be decoded. Stream adaptation is
achieved by dropping less important NAL units from the
original bitstream. Examples of NAL unit dependencies are
presented in the simplified buffer representation in Figure
1. The dependencies related to the dark gray NAL unit,
(D,Q,T) = (0,0,1), are shown with arrows going from the
higher level to the lower one. Obviously, if that NAL unit
is not received, all the others that depend on it, directly or
not, will not be able to be decoded. However, SVC is known
to be resilient against packet loss, where the reconstructed
video quality is proportional to the number of NAL units
received, assuming priority is given to lower layers during
the streaming process.

III. SVC BITTORRENT EXTENSION

In this work, we extend the previous Bittorrent protocol
description to enable scalable video streaming. As in Bittor-
rent, there are two main entities in our solution: a tracker
and peers, where a peer can be a seeder or a leecher. The
overlay organization is depicted in Figure 2, and more details
will be given in the next section. As a new peer joins the
network, it contacts first the tracker in order to retrieve a list
of peers having or consuming the same content, referred as a
swarm. Then, it will establish a number of connections and
start requesting pieces and distributing them after reception.

In P2P file-sharing systems, the client does not specify a
constraint on the pieces or their reception order. However,

this is the case in streaming systems. In addition, real-time
constraints are imposed on the pieces which can be obsolete
if not received at the scheduled interval in time. To respect
those constraints, we use a sliding window to represent the
next content to be played. This allows only pieces belonging
to the sliding-window to be requested.

In Bittorrent, the source files are cut into pieces of the
same size to enable concurrent downloading. However, in
SVC, each NAL unit may belong to a specific layer, thus,
peers can share the same NAL units, depending on the layers
composing the desired video quality. Therefore, to exploit
the potential of SVC, we will respect the video structure as
described in Figure 1 along with the sliding window. This
decomposition has the advantage of increasing the availabil-
ity of the NAL units in our P2P system, since they are shared
by the different substreams, and also the possibility to use
an RTP packetization [20]. Such payload formatting will
strengthen the delivery mechanism, especially under varying
network conditions in terms of bandwidth and packet loss. It
can also be used to adapt the stream between the end-points
by using intermediate MANEs (Media Aware Network El-
ements) [9]. However this solution incurs an overhead due
to the NAL unit size variation. To overcome this issue, a
multi-NAL units messages [21] can be adopted in future
work.

To take into account those considerations, we modified
the piece selection algorithm as follows. The quality desired
by the client is represented by a certain layer obtained by
this formula: Layer

i

= D
i

⇥Q
max

⇥T
max

+Q
i

⇥T
max

+T
i

,
where D

i

, Q
i

, T
i

are the different spatial, quality, and tempo-
ral levels desired and Q

max

, T
max

are the maximum levels
in the original video stream. In order to preserve the original
Bittorrent algorithms, we included a test Useful Piece to
the piece selection policies. A piece or an Access Unit is
considered as useful, if it is not complete, belongs to the
actual window, and the desired quality depends on it.

In a comparative study involving streaming extensions of
Bittorrent [18], the authors described three different piece se-
lection strategies: the Fixed-Size Window (FSW) that restricts
the Bittorrent requested pieces within a sliding window; the
High-Priority Set (HPS) uses a fixed-size set containing the
next pieces in sequence to be downloaded, while pieces
outside the set can be requested with a probability p; and
the Stretching Window (SW) that combines the two previous
approaches. The obtained results, in terms of QoS, showed
that FSW and SW achieved comparable performance while
outperforming the HPS strategy for a large window size.
For the simplicity and the superior QoS achieved by the
fixed-size window, we decided to use this policy with a
large enough window size. Thus, the requested pieces are
bounded by a window which is slided when completing the
download of the lower bound frame, or receiving a time-out
for this latter.

In the next section we present the evaluation and opti-



mization of this proposition.

IV. EVALUATION AND OPTIMIZATION

A. Test environment
As mentioned in the Section 2, we implemented our

proposition on top of the ns-2 [22] Bittorrent simulator. To
evaluate our solution we used the video Elephant Dreams,
that can be found at [23], with CIF (Common Intermedi-
ate Format, 352x288 resolution) as a maximum resolution,
having 15691 frames, a maximum framerate of 24 frames
per second, and encoded using the JSVM Software1. We
considered only the spatial and quality scalabilities in our
tests, since the single layer AVC already supports temporal
scalability. The SVC video was encoded with two spatial
levels, referred to as CIF and QCIF (Quarter CIF, 176x144
resolution) and two different quality levels, Q0 and Q1,
obtained using different quantization parameters as used in
the examples of the JSVM Software. Each SVC layer is
reflected in the AVC scenario by encoding a single-layer
video with the same resolution and fidelity. The simulations
were performed in a flash-crowd scenario where the peers
arrive uniformly within a choking interval. We suppose
a departure time of the peers based on an exponential
distribution with parameter � = 1s�1. However, the network
elements are generated following a star topology. A more
realistic topology will be investigated in the future by using
for instance the Georgia Tech Internet Topology Model (GT-
ITM) [24].

Table I shows the distribution of peers bandwidths accord-
ing to [25]. We assume a uniform distribution in [1,50]ms of
the access links delay. These assumptions try to approximate
the distributions observed for residential broadband networks
[26]. We limited the simulation to broadband networks since,
to the best of our knowledge, there is no extensive work on
characterizing wireless and mobile networks which will be
investigated in the future. To better evaluate our system, we
assume a correlation between a peer’s bandwidth and the
corresponding desired video quality as described in Table
II. Furthermore, for each quality we suppose there is only
one seeder having a particular upload bandwidth according
to Table II. We set the size of the window to 20 seconds,
which represents 3% of the complete video, while an initial
frame set of 2x the window size is prefetched to ensure a
good start-up.

B. Initial evaluation
To evaluate our solution in terms of QoS, we measure

the non-received NAL units ratio per leecher and report the
resulting distribution when running the simulation with 40
peers. Measuring non-received NAL units is only indicative
of the quality of the received substream because of the layer

1The version used is 9.19.14 and can be accessed with a command line CVS client:
cvs d :pserver:jvtuser:jvt.Amd.2@garcon.ient.rwth-aachen.de:/cvs/jvt login
cvs d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt checkout jsvm

Figure 3. Cumulative distribution of non-received NAL units ratio when
simulating a 40 peers network. The graph also shows the performance of
AVC and the optimization results

dependencies. However, in our solution we suppose that
lower layers are always sent before enhancement layers and
thus the number of NAL units received are correlated to the
quality obtained by the end-user. A more precise measure,
like the PSNR (Peak Signal-to-Noise Ratio) of the retrieved
substream, will be considered in the future.

In the SVC scenario, there is a single swarm where
the peers with different qualities can exchange pieces, as
opposed to the AVC scenario, where there are as many
swarms as qualities without any communication between
them. As a result, layered SVC increases the global utility of
the content, and we expect a better QoS compared to single-
layer AVC. We arbitrary define an acceptable QoS if the non-
received NAL units ratio is less than or equal to 20% of the
original stream. As we can see from Figure 3, in the case
of SVC without optimization, half of the peers have a ratio
greater than 20% and performs even worse than when using
AVC, thus contradicting our expectations. From the point
of view of overlay organization when using AVC, the peers
are gathered into groups having the same quality resulting
in a high reciprocation as opposed to when using SVC.
Following these observations, we propose to organize the
SVC overlay hierarchically by grouping together peers with
the same capacity. Moreover, the hierarchical organization
exploits the global availability of the SVC content by allow-
ing the peers with different desired qualities to communicate.
This overlay structure can be achieved at two levels: the
tracker level, by returning the most suitable peer set to the
requesting client; and on the peer level, by improving the
peer selection algorithm.

C. Tracker optimization
The protocol between the peers and the tracker was not

implemented. On the contrary, we used the tracker as a
shared object between the peers. It is used at convenience
to get the peer list and also to store global parameters and



Table I
PEERS CHARACTERISTICS AND THEIR DISTRIBUTION

Total upload bandwidth (Kbps) 256 320 384 448 512 640 768 1024 1500 3000
Contributed upload bandwidth (Kbps) 150 250 300 350 400 500 600 800 1000 1000
Download Bandwidth (Kbps) 512 640 768 1024 1300 2048 2048 3000 5000 9000
Distribution (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 1.4 14.9

Table II
SEED AND QUALITY DISTRIBUTION

Download bandwidth range (Kbps) <= 1024 ] 1024 , 2048 ] ] 2048 , 5000 ] > 4000
Seed upload bandwidth (Kbps) 500 1000 1500 2000
Desired quality QCIFxQ0 QCIFxQ1 CIFxQ0 CIFxQ1

variables to limit the memory consumption of the simulation.
As every peer consumes or provides a certain quality which
in turn depends on a certain number of layers, the client’s
peer list will provide a large set of available layers. However,
a random list of peers may not be able to provide a large
set enough to satisfy all the layer dependencies. Thus, the
peer list returned by the tracker should satisfy a maximum
of these dependencies. Furthermore, SVC layers have a
property where the closer the quality offered by two layers
are the larger is the amount of shared content between them.
As a result, gathering the peers with close desired layers
together will result in a large content availability and a good
reciprocation among them. The tracker can help to achieve
this peer organization by returning a more adequate list of
peers when receiving such request. More specifically, the
tracker gives priority to the peers having the closest or equal
layer to the requesting client’s. However, despite two peers
have close layers, there are cases where they may not be
interested in each other. An example is when both peers
have already shared all their content and are waiting for
pieces that other peers with further layers may provide. To
tackle this problem, we propose to let some peers (5 in our
simulations) selected randomly regardless of their layer.

Figure 2 shows how we organize the overlay and how we
manage the priority when unchoking. The peers requesting
the same layer is considered as the optimal case where both
peers share exactly the same NAL units. Hence, the more
peers share content the more communication is high, as
shown in the halo of intensive communication. Nevertheless,
this solution is still not fair for the first peers that join the
network. Since at the beginning there are few peers and we
limit the number of connections (discussed further), they will
receive the complete list and will be obliged to communicate
with a non optimized set of peers. To address this issue,
when a peer joins the network, it will first request a limited
list (10 peers) and at the next interval it will request a normal
sized one (25 peers). With this sacrifice of the first interval,
all the peers will receive an optimized set at the next request.
The positive results of the tracker peer list optimizations
are shown in Figure 3. We can already observe that this
overlay organization improves the QoS, and our SVC based
solution outperforms the AVC case, but there is still room

for improvement at the peer level.

D. Peer selection optimization

In Bittorrent protocol reciprocation algorithm, the receiver
unchokes the peers with the highest download rate (upload
rate is used in case of a seeder). If we consider a distant
peer having a lower layer than the receiver’s, as the peer
shares more content, it gets a higher priority to be selected
as an unchoking candidate. After the client receives all what
the peer has to offer, a starvation situation can be reached
if the other peers are selected in the same way because the
higher layers can not be provided. Hence, a peer’s layer is an
important parameter that should be taken into account during
the choking process. Therefore, as in the case of the tracker,
layer priority is the first one to consider when ordering the
peer list by the receiver, by unchoking the peers requesting
the closest layer to the client’s. The list is once again ordered
according to the highest bandwidth and finally according
to the service rate, to maintain a good reciprocation and
avoid free-riding. Other parameters can be included to take
into account, for example, the locality between the peers
by using end-to-end round trip time (RTT) measurements
[10]. However, the overlay is not totally organized due to the
characteristics of the peer list returned by the tracker, and
also because we only unchoke few peers, 4 in our case like
in Bittorrent. Furthermore, peers can be unchoked without
respecting these rules in the cases where there are only few
peers or when using optimistic unchoking. The result of
the final improvement is shown in Figure 3. If we take
the same considerations concerning the limit for the non-
received NAL units ratio for an acceptable QoS as in the
initial evaluation, our solution can ensure the same quality
for 83% of the peers against less than 60% when using AVC.

E. Scalability issues

In this section we analyze our system in terms of scalabil-
ity, where scalability refers here to the growth of the system
in terms of the number of peers. Figure 4 shows the non-
received NAL units ratio when running the simulation with
an increasing number of peers up to 100 peers. The graph
shows clearly that the average QoS drops when increasing
the number of peers. To better understand these results,



Figure 4. Cumulative distribution of non-received NAL units while
increasing the number of peers

we determined for 100 peers the percentage of average
received NAL units for every quality along with their content
availability at the seeders and the number of peers sharing
them, and plotted the results in Figure 5. We can observe
a correlation between the availability of the content at the
sources and the respective downloaded NAL units ratio.
However, for the peers with QCIFxQ1 quality, since they
are few, the seeder and the higher quality peers can easily
provide them the desired NAL units, thus getting the best
QoS. We conclude that the observed drop of performance
when scaling the number of peers is due mainly to the
content availability, which is a well known limit of P2P
systems.

Another important parameter to a achieve good scalability,
in terms of QoS, is the number of connections per peer.
The previous tests were obtained by limiting the number
of connections to 30. In order to determine the effect of
this parameter in our system, we don’t limit the number
of connections per peer when running the same simulation
with 60 peers. The results are plotted in Figure 4. Obviously,
having too many connections impair performance. This is
because TCP congestion control behaves very poorly when
sending over many connections at once and also because of
the broadcasting of HAVE messages. Although the payload
of this message is not large, encapsulated in TCP packets
and broadcast every received NAL unit, it constitutes a large
overhead [13]. Another optimization can be to avoid sending
HAVE messages to a peer if it already have the piece [13]
which will be investigated in the future.

V. RELATED WORK

Recently, many researchers were interested in combining
SVC and Bittorrent like P2P systems for video streaming
with high QoS. Broadcasting SVC videos over Bittorrent
was proposed in [27]. In this work, the Bittorrent rarest-first
policy was slightly modified where they also used a sliding
window. However they only used quality scalability and did

Figure 5. Percentage of average received NAL units, content availability
at the seeds and the number of peers per quality for 100 peers. Note that,
because every seed has the base layer, its content availability is 100%,
thanks to SVC

not fully exploit the SVC structure. Moreover, the overlay
organization is the same as Bittorrent where layered SVC
imposes a reorganization of the peers in order to improve
the QoS. In [28], the authors successfully mixed SVC to
a Bittorrent like P2P player and used a Prioritized Sliding
Window to increase the QoS perceived by the user. Unlike
our approach, their target was a real environment where
they could run their tests across different networks and
using different access devices. While this approach validates
the use of the adaptability of SVC in real heterogeneous
environments, it lacks scalability, where the system scaled
at a maximum of 12 peers. Moreover, the peer selection
does not exploit the SVC layers to organise the overlay
and being vulnerable to free riding since no tit-for-tat policy
was proposed. In [29] the authors proposed an unstructured
self-adaptive P2P streaming solution, where they used a
Bittorrent like mesh-pull mechanism. They also proposed
a peer selection policy where each peer is laying on a
layer and selects the peers situated on the same or higher
layer, but does not exploit the content of lower layers and
no tit-for-tat policy was used. Z. Liu et al. [25] proposed
a Bittorrent like mesh-based open P2P streaming system
that uses a tit-for-tat approach referred to as Streaming
Trading, where peers that upload more see higher quality
video. The system can accommodate different video coding
schemes, like single-layer, layered, and multiple description
coding, trading substreams rather than chunks, but without
implementing them. Besides we followed the SVC structure
instead of simple chunks, the Stream Trading approach can
be interesting to compare to our piece selection algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a Scalable Video Coding
extension of the Bittorrent file-sharing protocol to provide



efficient video sharing and streaming over variable network
conditions and end-user terminal capabilities. We adapted
the protocol in order to support the real-time constraints
imposed by the streaming process and the multi-layer SVC
coding. Results showed a better QoS perceived by the end
users compared to single layer AVC based solution. Packet
level simulation proved to be flexible compared to real
environment, while we could try many different approaches,
algorithms and parameters and scaling easily to hundreds of
peers without loosing underlying precision.

This work can be considered as a testbed for other
solutions involving scalable video coding and Bittorrent base
streaming systems. That is, we can extend this simulation
to include for example Network Coding (NC) and Multiple
Description Coding (MDC).

REFERENCES

[1] N. Leavitt, “Network-usage changes push internet traffic to
the edge,” Computer, vol. 43, no. 10, pp. 13 –15, oct. 2010.

[2] Youtube. [Online]. Available: www.youtube.com
[3] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic

characterization: a view from the edge,” in Proceedings of the
7th ACM SIGCOMM conference on Internet measurement,
ser. IMC ’07. ACM, 2007, pp. 15–28. [Online]. Available:
http://dx.doi.org/10.1145/1298306.1298310

[4] Ellacoya data shows web traffic overtakes peer-to-
peer (p2p) as largest percentage of bandwidth on the
network. [Online]. Available: http://www.vaxination.ca/crtc/
NXTcommEllacoyaMediaAlert.pdf

[5] I. Djama, T. Ahmed, A. Nafaa, and R. Boutaba, “Meet
in the middle cross-layer adaptation for audiovisual content
delivery,” Multimedia, IEEE Transactions on, vol. 10, no. 1,
pp. 105 –120, jan. 2008.

[6] Pplive. [Online]. Available: http://www.pplive.com/
[7] L. Zhao, J.-G. Luo, M. Zhang, W.-J. Fu, J. Luo, Y.-F.

Zhang, and S.-Q. Yang, “Gridmedia: A practical peer-to-peer
based live video streaming system,” in Multimedia Signal
Processing, 2005 IEEE 7th Workshop on, 30 2005-nov. 2
2005, pp. 1 –4.

[8] Sopcast. [Online]. Available: http://www.sopcast.com/
[9] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the

scalable video coding extension of the h.264/avc standard,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 17, no. 9, pp. 1103–1120, 2007. [Online].
Available: http://dx.doi.org/10.1109/TCSVT.2007.905532

[10] M. Mushtaq and T. Ahmed, “Hybrid overlay networks man-
agement for real-time multimedia streaming over p2p net-
works,” in Real-Time Mobile Multimedia Services, ser. Lec-
ture Notes in Computer Science, D. Krishnaswamy, T. Pfeifer,
and D. Raz, Eds. Springer Berlin / Heidelberg, 2007, vol.
4787, pp. 1–13.

[11] F. de Ası́s López-Fuentes, “P2p video streaming combining
svc and mdc,” Applied Mathematics and Computer Science,
vol. 21, no. 2, pp. 295–306, 2011.

[12] S. Mirshokraie and M. Hefeeda, “Live peer-to-peer streaming
with scalable video coding and networking coding,” in
Proceedings of the first annual ACM SIGMM conference
on Multimedia systems, ser. MMSys ’10. New York,
NY, USA: ACM, 2010, pp. 123–132. [Online]. Available:
http://doi.acm.org/10.1145/1730836.1730852

[13] Bittorrent protocol specification. [Online]. Available: http:
//wiki.theory.org/BitTorrentSpecification

[14] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann,
“Efficient simulation of large-scale p2p networks: packet-
level vs. flow-level simulations,” in Proceedings of the
second workshop on Use of P2P, GRID and agents for the
development of content networks, ser. UPGRADE ’07. New
York, NY, USA: ACM, 2007, pp. 9–16. [Online]. Available:
http://doi.acm.org/10.1145/1272980.1272986

[15] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: En-
hancing bittorrent for supporting streaming applications,” in
INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, april 2006, pp. 1
–6.

[16] P. Shah and J.-F. Paris, “Peer-to-peer multimedia streaming
using bittorrent,” in Performance, Computing, and Communi-
cations Conference, 2007. IPCCC 2007. IEEE Internationa,
april 2007, pp. 340 –347.

[17] K. Katsaros, V. Kemerlis, C. Stais, and G. Xylomenos, “A
bittorrent module for the omnet++ simulator,” in Modeling,
Analysis Simulation of Computer and Telecommunication Sys-
tems, 2009. MASCOTS ’09. IEEE International Symposium
on, sept. 2009, pp. 1 –10.

[18] C. Stais, G. Xylomenos, and A. Archodovassilis, “A com-
parison of streaming extensions to bittorrent,” in Computers
and Communications (ISCC), 2011 IEEE Symposium on, 28
2011-july 1 2011, pp. 1068 –1073.

[19] Omnet++. [Online]. Available: www.omnetpp.org
[20] Rtp payload format for scalable video coding. [Online].

Available: http://tools.ietf.org/html/draft-ietf-avt-rtp-svc-27
[21] S. Medjiah, T. Ahmed, E. Mykoniati, and D. Griffin, “Scal-

able video streaming over p2p networks: A matter of har-
mony?” in Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD), 2011 IEEE 16th
International Workshop on, june 2011, pp. 127 –132.

[22] ns-2 network simulator. [Online]. Available: http://isi.edu/
nsnam/ns/

[23] Yuv sequences. [Online]. Available: http://trace.eas.asu.edu/
yuv/

[24] Georgia tech internet topology model (gt-itm). [Online].
Available: http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.
html

[25] Z. Liu, Y. Shen, K. Ross, S. Panwar, and Y. Wang, “Substream
trading: Towards an open p2p live streaming system,” in
Network Protocols, 2008. ICNP 2008. IEEE International
Conference on, oct. 2008, pp. 94 –103.

[26] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu, “Characterizing residential broadband networks,”
in Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, ser. IMC ’07. New York,
NY, USA: ACM, 2007, pp. 43–56. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298313

[27] V. R. P.Garca Ortiz, J.M. Dana and I.Garca, “Broadcast-
ing of h.264/svc video over bittorrent-like networks,” Actas
del Workshop on MultimediaData Coding and Transmission
(WMDCT), p. pages 41 46, 2010.

[28] M. S. N. Roberto Pontes Nunes, Rui Santos Cruz, “Scalable
video distribution in peer-to-peer architecture,” in CRC’2010
- 10a Conferencia sobre Redes de Computadores, 2010, pp.
95–100.

[29] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod, “Low-
delay peer-to-peer streaming using scalable video coding,” in
Packet Video 2007, nov. 2007, pp. 173 –181.


